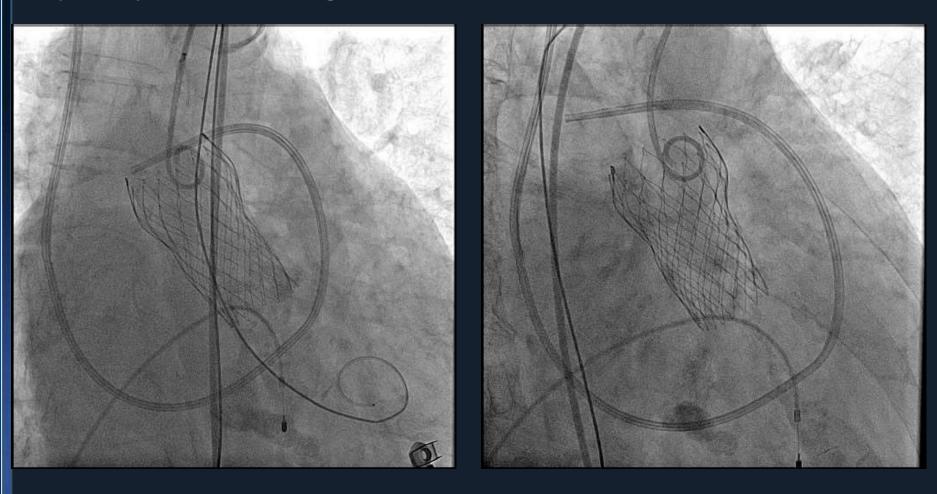
AP Valves 2017: Case Reviews

Conduction Abnormalities: How to Avoid & Manage ?

Aug 16st, 2017

Won-Jang Kim, MD, PhD


Associate Professor, Department of Cardiology CHA Bundang Medical Center CHA University School of Medicine

Case

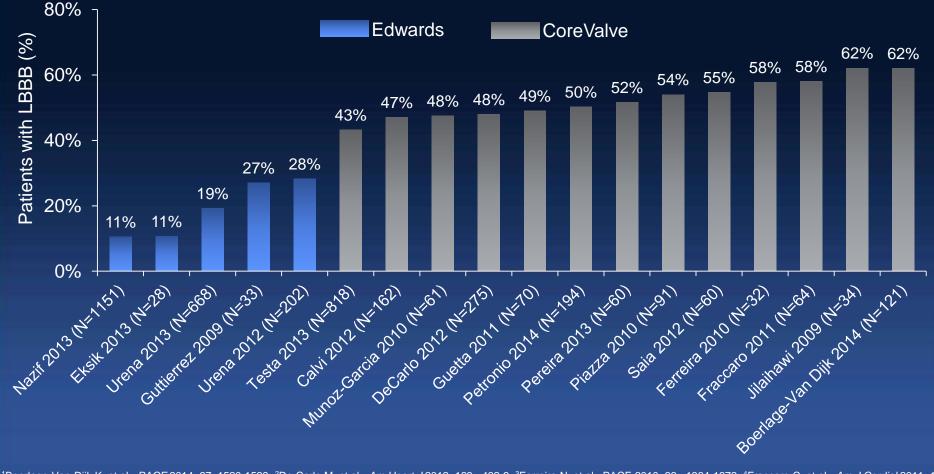
89 yo lady, DM, CKD stage 2, DOE NYHA III

University School of Medicine

CAVB

3 days later

Incidences and Impacts on Clinical Outcomes

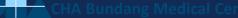


University School of Medicine

Incidence of Left Bundle Branch Block: Varies by site, study, valve type

Post-TAVR or hospital discharge

¹Boerlage-Van Dijk K, et al., *PACE* 2014; 37: 1520-1529; ²De Carlo M, et al., *Am Heart J* 2012; 163: 492-9; ³Ferreira N, et al., *PACE* 2010; 33: 1364-1372; ⁴Fraccaro C, et al., *Am J Cardiol* 2011; 10 7: 747-754; ⁵Guetta V, et al., *Am J Cardiol* 2011; 108: 1600-1605; ⁶Munoz-Garcia A, et al., *Rev Esp Cardiol* 2010; 63(12): 1444-51; ⁷Piazza N, et al., *EuroIntervention* 2010; 6(4): 475-84; ⁸Saia F, et al., *Catheter Cardiovasc Interv* 2012; 79(5): 7712-9; ⁹Jilaihawi H, et al., *Am Heart J* 2009; 157: 860-6; ¹⁰Calvi V, et al., *J Interv Card Electrophysiol* 2012; 34: 189-95; ¹¹Pereira E, et al., PACE 201 3; 36(5): 559-69; ¹²Petronio AS, et al., presented at EuroPCR 2014; ¹³Testa L, et al., *Circulation* 2013; 127: 1300-1307; ¹⁴Eksik A, et al., *J Invasive Cardiol* 2013; 25(6): 305-309; ¹⁵Nazif T, et al., *Eu r Heart J* 2013; epub ahead of print; ¹⁶Urena M, et al., *J Am Coll Cardiol Intv* 2014; 7(2): 128-36; ¹⁷Urena M, et al., *J Am Coll Cardiol* 2012; 60(18), 1743-52; ¹⁸Gutierrez M, et al., *Am Heart J* 2009; 1 58: 302-8.


Impact of New LBBB on Mortality

Inconclusive data may result from how pacemakers are treated in the analysis

Study	Valve Type, N	% LBBB Discharge	% LBBB 1 Year	Impact on 1-Yr All-Cause Mortality	Patients in Analysis	Post-TAVI PPM which were excluded
De Carlo ¹	MCV N=275	26.9%	NR	No (p=0.37)	All new LBBB bef ore discharge	PPM prior to discharge
Pereira ²	MCV N=65	37.5%*	NR	No (0=0.111)	New post procedu ral LBBB	PPM prior to discharge
Houthuizen ³	MCV N=387 EDW N=292	34.3%	NR	Yes (p=0.006)	New LBBB within 7 days	All post-TAVI PPM
Houthuizen ⁴	MCV N=223 EDW N=253	28.7%	22.7%	Yes (p=NR)	New LBBB that pe rsisted at 1 year	All post-TAVI PPM
Urena⁵	EDW N=202	13.2%	5.0%	No (p=0.610)	New LBBB at disc harge	PPM prior to discharge
Franzoni ⁶	MCV N=87 EDW N=151	17.2%	NR	No (p=0.42)	New LBBB at disc harge	NR
Testa ⁷	MCV N=818	27.4%	NR	No (p=0.3)	New LBBB at disc harge	PPM within 48 hrs of TA VI
Nazif ⁸	EDW N=1151	10.5%	8.5%	No (p=0.73)	New LBBB at disc harge	PPM prior to discharge
Urena ⁹	EDW N=668	11.8%	NR	No (p=0.174)	New LBBB at discharge	NR
Wenaweser ¹⁰	MCV N=1015	NR	23.1%	(p=0.393)	New LBBB at 30 days	All post-TAVI PPM

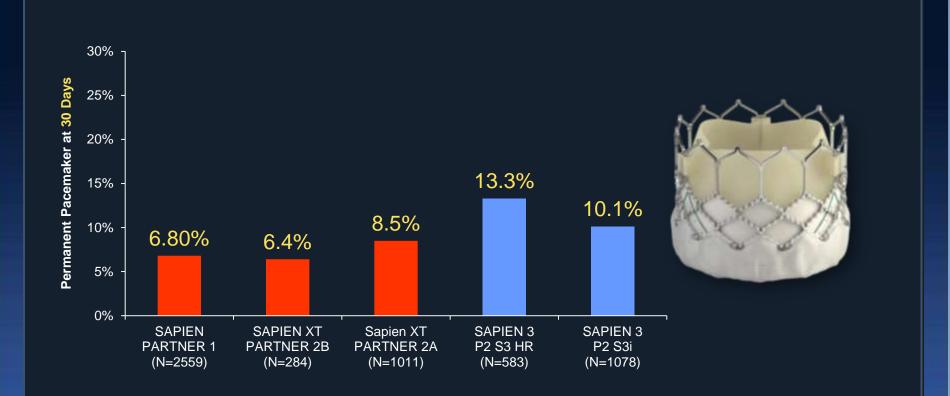
¹De Carlo M, et al., *Am Heart J* 2012; 163: 492-9; ²Pereira E, et al., *PACE* 2013; 36(5): 559-69; ³Houthuizen P, et al., *Circulation* 2012; 126: 720-728; ⁴Houthuizen P, et al., *EuroIntervention* 2014; 9(10): 1142-1150; ⁵Urena M, et al., *J Am Coll Cardiol* 2012; 60(18): 1743-52; ⁶Franzoni I, et al., *Am J Cardiol* 2013; 112(4): 554-559; ⁷Testa L, et al., *Circulation* 2013; 127: 1300-1307; ⁸Nazif T, et al., *Eur Heart J* 2013; epub ahead of print; ⁹Urena M, et al., *J Am Coll Cardiol Intv* 2014; 7(2): 128-36; ¹⁰Wenaweser P, et al., presented at EuroP<u>CR</u> 2013

University School of Medicin

Incidence of Pacemaker post TAVR

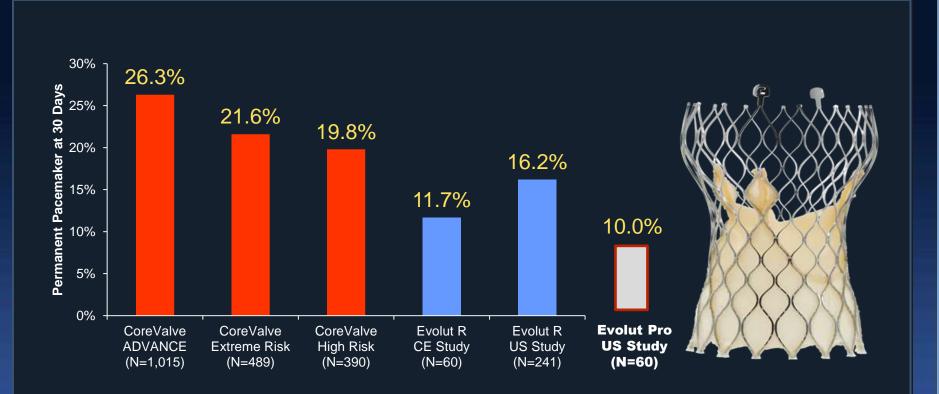
	Studies	Patients	Pacemaker	Sapien	CoreValve
Khatri et al	44	12,116	13.1%	6.4%	25.4%
Siontis et al	41	11,210	17%	6%	28%

 Meta-analyses have analyzed the rates of new PPM with the early generation devices


- Medtronic CoreValve ~ 25-32%
- Edwards Sapien (XT) ~ 6%

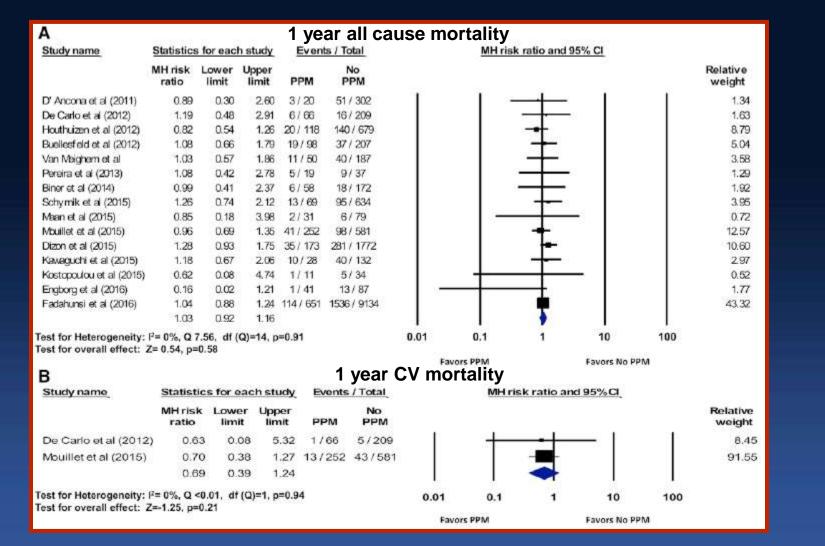
Khatri. Ann Intern Med 2013, Siontis. JACC 2014, Mohananey. Cir Cardiovasc Intv 2017

Newer Generation Devices: Edwards SAPIEN 3


Nazif TM. J Am Coll Cardiol Intv 2015;8:60-9.; Webb JG. J Am Coll Cardiol Intv 2015;8:1797-806.; Leon MB. N Engl J Med 2016;374:1609-20.; Kodali S. Eur Heart J. 2016;37:2252-62

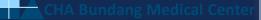
Adapted from Nazif T. TVT 2017

Newer Generation Devices: Medtronic Evolut-R



Linke A. Eur Heart J 2014;35:2672-84; Popma J. J Am Coll Cardiol 2014;63:1972-81; Adams D. N Engl J Med 2014;370:1790-8; Manoharan G. J Am Coll Cardiol Intv 2015;8:1359-67; Williams MR presented at ACC 2016, Forrest J presented at ACC 2017

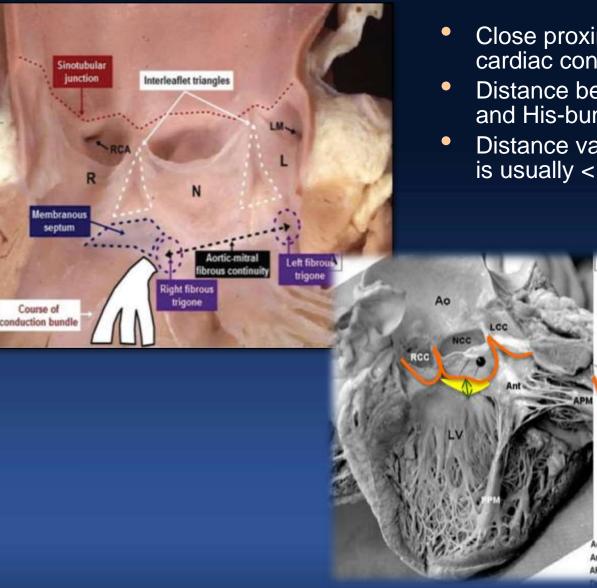
Adapted from Nazif T. TVT 2017


Clinical Impact of PPM After TAVR

PPM implantation is not assosciate with increased risk of death, CV death, stroke, MI both at short- and long-term follow-up.

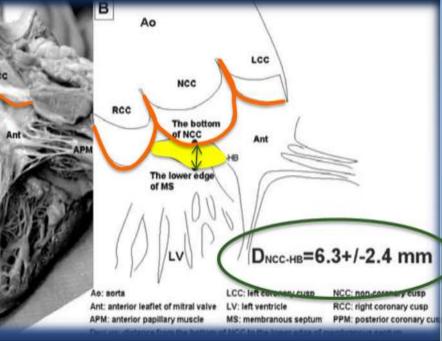
rsity School of Medicine Mohananey D. Cir Cardiovasc Interv 2017

Mechanism and Time Course of Recovery



University School of Medicine

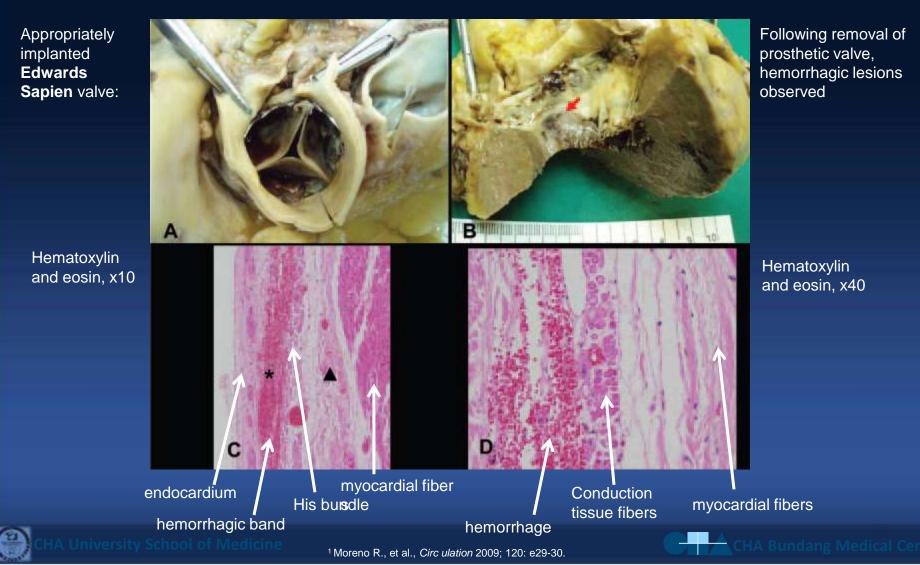
CHA Bundang Medical Center


Anatomical Considerations

Close proximity of the aortic valve to the cardiac conduction system¹

 Distance between non-coronary cusp and His-bundle: on average, 6.3 mm

 Distance varies among individuals, but is usually <10 mm



Jniversity School of Medicine

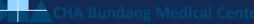
¹ Igawa O. *Circ J* 2009; 73 Suppl I: 257.

Anatomical Considerations

Prosthetic valves may contact the conduction system, causing injury (inflammation, or in this case, hemorhage)¹

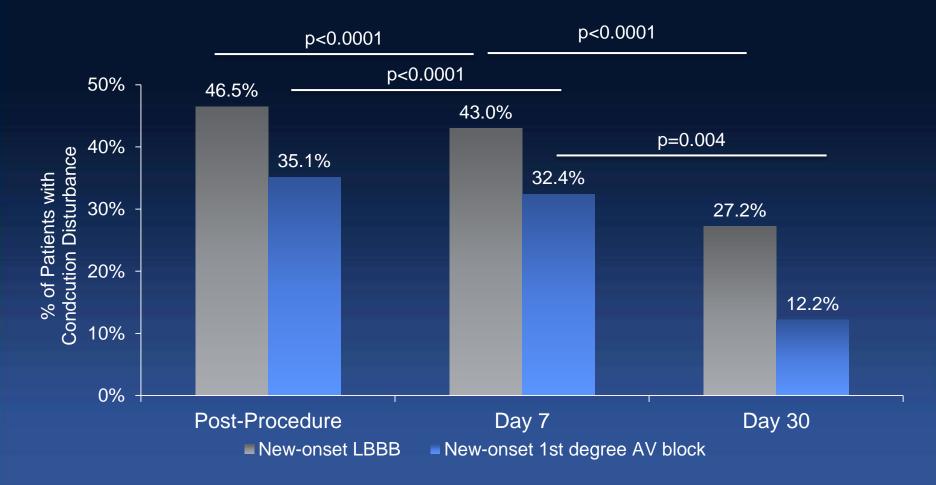
Mechanism of Conduction Disturbances

 Conduction abnormalities may resolve due to the transient nature of some TAVRinduced tissue injury


Mechanical (Direct) Injury

- Wall tension due to radial for ce
- Procedural Inflammation
- Procedural Edema

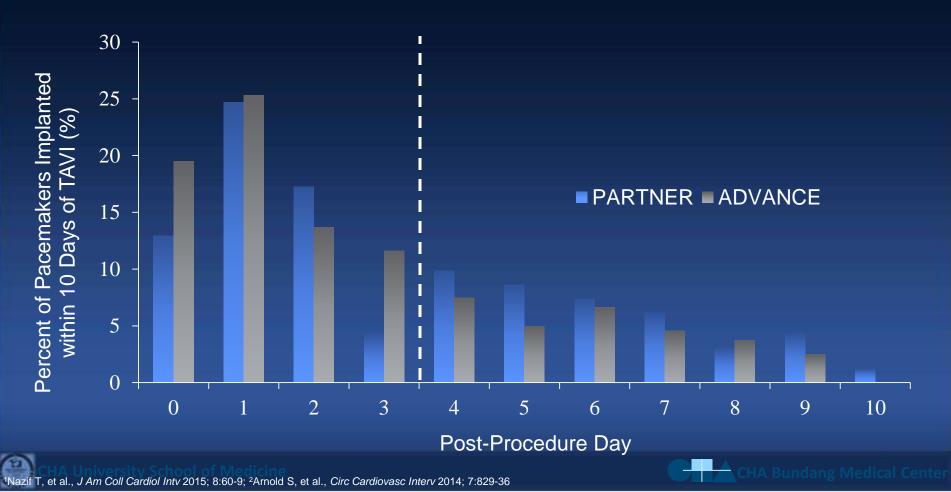
Ischemic (Indirect) Injury


- Tissue compression during BAV
- Hypotension during rapid pa cing (BAV procedure)
- Other hypotensive episodes

Conduction Disturbances Resolve with Time

Paired analyses in ADVANCE II showed that 42% of new LBBB and 65% of new 1st degree AV block resolved spontaneously by day 30¹

Patients with normal baseline AV conduction were considered for new-onset AV block. Patients with normal baseline IV conduction were considered for new-onset LBBB. New-onset is defined as a new conduction disturbance which initiates within 48 hours of TAVI.


Patients receiving new permanent pacemakers were excluded

Paired data for each type of conduction disturbance. LBBB n=114, 1st degree n=74

¹Petronio S, et al., presented at EuroPCR 2014

Timing of Permanent Pacemaker Implants

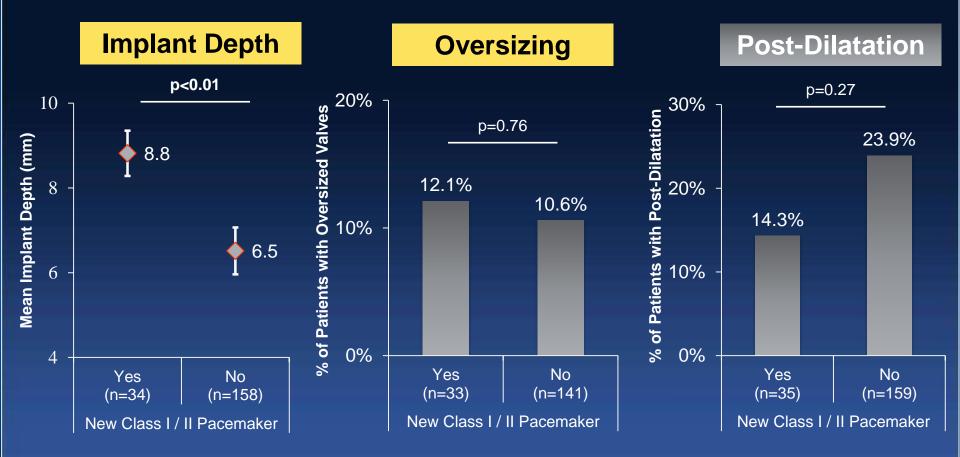
- Of pacemakers implanted within 10 days of TAVI, the majority had been implanted by day 3 in both PARTNER and ADVANCE.
- Some proportion of conduction disturbances (all types) will spontaneously resolve, though the time course for a given patient is difficult to predict.
- Consider watchful waiting.

Predictors : Manageable or not

University School of Medicine

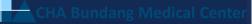
Predictors of Conduction Disturbances

- More than 40 studies have been published on predictors of post-TAVR conduction disturbances (CDs) and permanent pacemaker implant (PPM)
- Studies varied in size, rigor, and the univariable characteristics which were considered, but some central themes emerged:


 Age > 75 years⁹ Previous MI³ RBBB^{2,3,4,5,7} of LBBB exit point¹ Septum thickness^{1,6} Implant Depth^{2,3,7} Thickness of the non- Balloon Aortic Valvulo 	Clinical	Anatomical	Procedure and Operator-Related
Other pre-existing	 Age > 75 years⁹ Previous MI³ RBBB^{2,3,4,5,7} Other pre-existing conduction 	 of LBBB exit point¹ Septum thickness^{1,6} Thickness of the non-coronary cusp¹ Membranous septum I 	 sthesis³ Implant Depth^{2,3,7} Balloon Aortic Valvulo plasty⁸ Application of PPI gui delines¹⁰

¹Jilaihawi, et al. Am Heart J 2009; ²Munoz-Garcia, et. al. JACC CV 2012; ³Piazza et. al. EuroIntervention 2010; ⁴De Carlo, et. al. Am Heart J 2012; ⁵Calvi, et. al. JICE 2011; ⁶Saia, et. al. Cath Card I ntv 2012; ⁷Fraccarao, et. al. Am J Card 2011; ⁸Khawaja, et. al. Circ 2011; ⁹Schroeter et. al. EuroPACE 2011; ¹⁰Wenaweser, et. al. presented at EuroPCR 2013; ¹¹Meredith, et. al. presented at TCT 2012; ¹²Hamdan, et al. JACC Cardiovasc Interv 2015

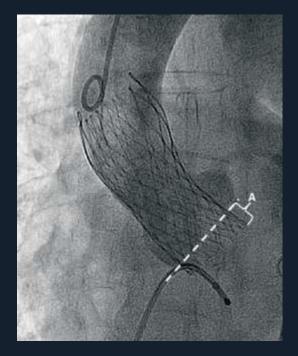
Procedural Considerations – Manageable !

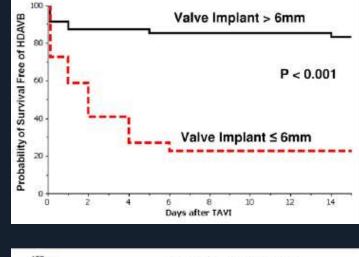

ADVANCE II confirmed that implant depth is the strongest <u>procedural</u> predictor of new PPM¹

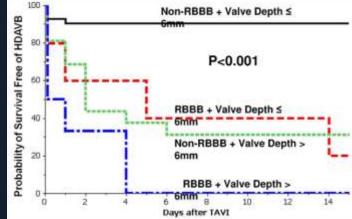
Error bars are standard error

Implant depth defined as the distance from the lower edge of the non-coronary leaflet to the ventricular edge of the frame *Oversizing occurs when a valve is implanted in an annulus that is smaller than the range defined by the CoreValve sizing guide % Oversizing = 100 x ([Perimeter of CoreValve– CT Derived Perimeter of the Annulus] / CT Derived Perimeter of the Annulus)

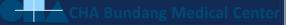
¹Petronio S, et al., presented at EuroPCR 2014


How to Avoid? 1. High, Shallow Implantation




University School of Medicine

Depth of Implantation: CoreValve



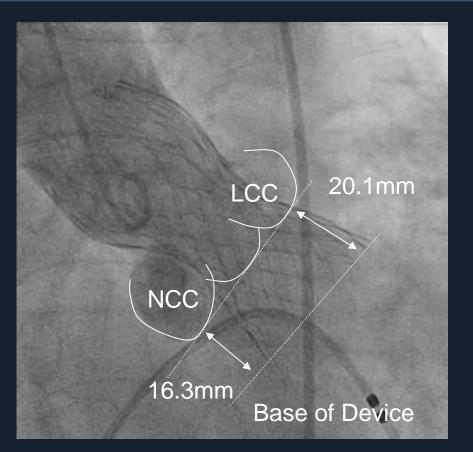
University School of Medicine

Gueta et al. AJC 2011

Depth of Implantation: CoreValve

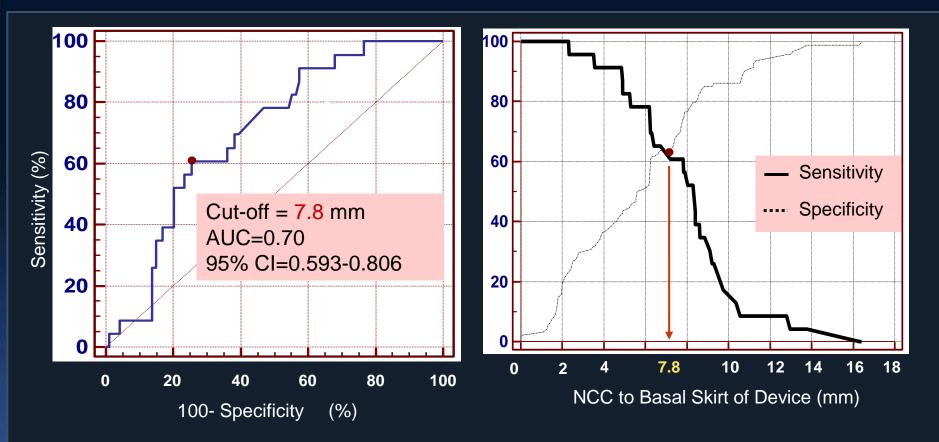
 Kammler et al: MDCT in 53 Patients before and after TAVR with CoreValve

- Depth of Implantation:
 - PPM (9.7 vs 6.3 mm, p=0.001)
 - >6 mm depth sensitivity 89%



Kammler et al. J Cardiol 2016

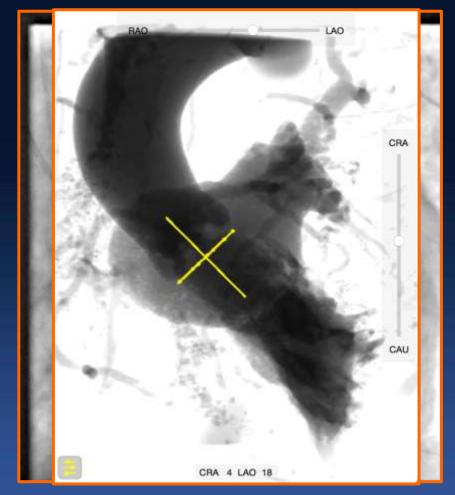
Device Depth : CoreValve 6 AP centers, N=117 patients

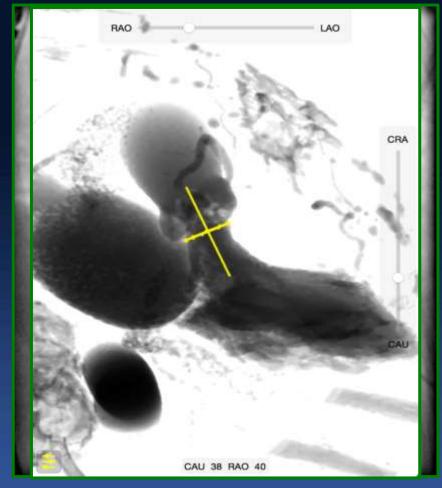


29 mm with PPM

NCC, non-coronary cuspid; LCC, left coronary cusp; PPM, permanent pacemaker

AP Corevalve registry. Kim et al. 2014 ACC. J Inv Cardiol 2015


Device depth vs. PPM



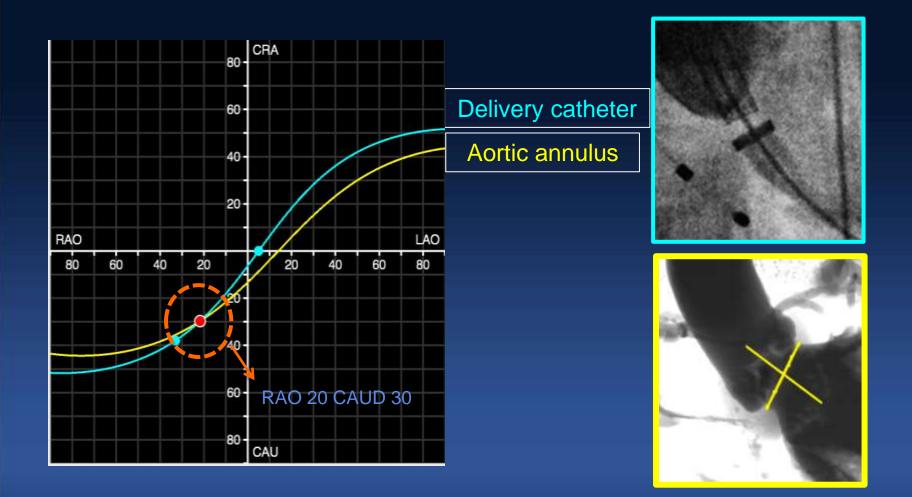
Sensitivity 60.87%, Specificity 74.47% PPV 35.14%, NPV 87.5% Accuracy 70.94%

AP Corevalve registry. Kim et al. 2014 ACC. J Inv Cardio 2015

Why do we perceive a relative difference?

LAO 18 CRA 4 2-chamber view

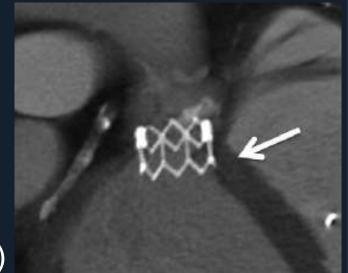
Traditional – LVOT foreshortend


RAO 40 CAU 38 3-chamber view LVOT elongated

HA University School of Medicine Adapted from N. Piazza EuroPCR 2015

CHA Bundang Medical Cente

Intersection between aortic annulus and delivery catheter S-curves


Adapted from N. Piazza EuroPCR 2015

Depth of Implantation SAPIEN

Binder: MDCT in 89 Patients
 before and after TAVR with ESV

- Depth of Implantation:
 - LBBB/CHB (5.5 vs 3.4mm, p=0.01)
 - PPM (7.1 vs 3.5mm, p=0.001)

Binder et al. JACC Cardiovasc Interv 2013;6:462-8.

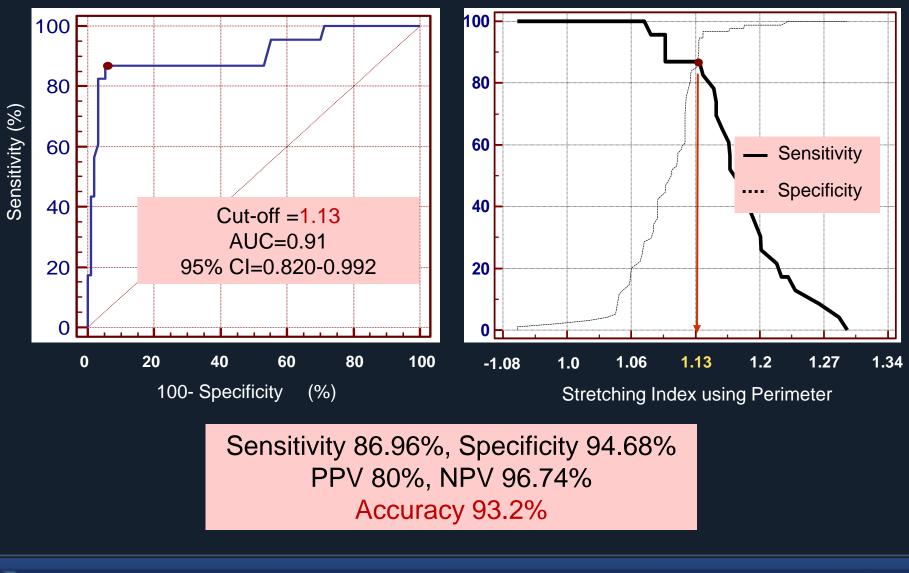
How to Avoid ? 2. Not too much over-size or stretch

University School of Medicine

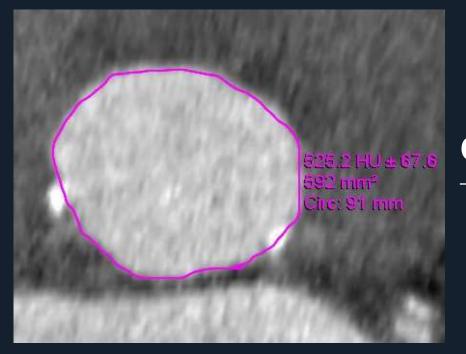
THV Over-Sizing

 Katsanos et al: MDCT in 94 Patients before and after TAVR with SAPIEN

- Independent predictors of PPM included
 - Depth of Implantation: OR 1.4 per mm
 - Annulus Area oversizing > 15%: OR 5.3



Katsanos et al. A J Cardiol 2014


Stretching Index vs. PPM

AP Corevalve registry. Kim et al. 2014 ACC. J Inv Cardiol 2015

Perimeter Stretching Index by CT Examples – No PPM

31 mm device

CoreValve, 31 mm Calculated Perimeter 97.3 mm

Measured Perimeter 91 mm

= 1.07

Perimeter 91mm; Area 592 mm²

Perimeter Stretching Index by CT Examples – PPM

29 mm device

CoreValve: 29mm Calculated Perimeter 91.1 mm

Measured Perimeter 73.5 mm

= 1.24

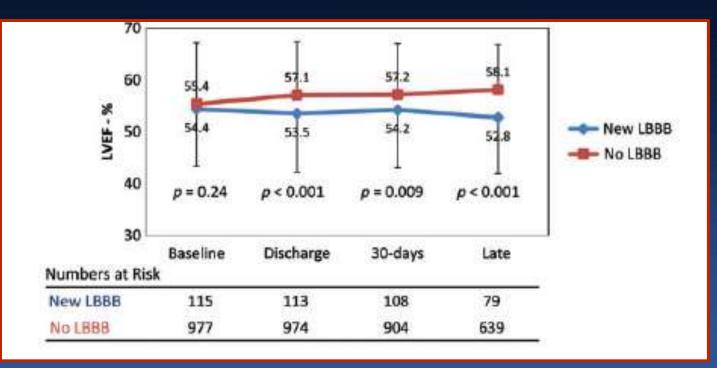
Perimeter 73.5mm; Area 404 mm²

SDev: 127

Avg. Diameter: 22.7 mm

Perimeter: 73.5 mm

Beyond Technical Issues



University School of Medicine

Clinical Impact of Conduction Disturbances: New LBBB and Recovery of LVEF

1151 Patients from PARTNER

sity School of Medicine Nazif. European Heart J. 2014;35:1599-607.

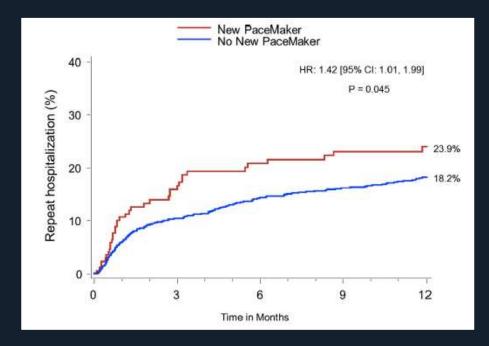
Clinical Impact of LBBB after TAVR

в

1-year RR of cardiac death

	LBBB following	TAVR	No LBBB following	TAVR		Risk Ratio			Ri	sk Rat	tio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	È		M-H, Ra	ndom	, 95% C	3	
Franzoni, et al. 2013	4	63	12	175	6.3%	0.93 [0.31, 2.77]				•			
Testa, et al. 2013	20	224	54	594	22.6%	0.98 [0.60, 1.60]			1	+	-		
Urena, et al 2014	16	79	98	589	23.6%	1.22 [0.76, 1.95]				-+=			
Nazif, et al. 2014	13	121	63	1030	18.5%	1.76 [1.00, 3.10]					-	2	
Houthuizen, et al. 2012	42	233	42	446	29.0%	1.91 [1.29, 2.85]				17	-		
Total (95% CI)		720		2834	100.0%	1.39 [1.04, 1.86]							
Total events	95		269										
Heterogeneity: Tau ² = 0	.03; Chi ² = 5.90, df	= 4 (P =	0.21); l ² = 32%				+	1	1	+	1	1	+
Test for overall effect: Z	= 2.23 (P = 0.03)						0.1	0.2	0.5	1	2	0	10
	8 Q					No	LBBB	followin	ng TAVR	: L	BBB fo	llowing	TAVR

С


1-year RR of all-cause death

Study or Subgroup	LBBB following	TAVR	No LBBB followin Events	g TAVR	weight	Risk Ratio M-H, Random, 95% Cl			k Ratio ndom, 95% Cl	
Franzoni, et al. 2013	8	63	26	175	6.2%	0.85 [0.41, 1.79]				
Nazif, et al. 2014	21	121	190	1030	13.3%	0.94 [0.62, 1.42]			•	
Testa, et al. 2013	42	224	117	594	16.7%	0.95 [0.69, 1.31]			•	
Carrabba, et al. 2015	4	34	7	58	2.9%	0.97 [0.31, 3.09]	10			
Urena, et al 2014	22	79	167	589	14.4%	0.98 [0.67, 1.43]			+	
Houthuizen, et al. 2012	62	233	78	446	17.7%	1.52 [1.13, 2.04]				
Schymik, et al. 2015	41	197	57	437	14.9%	1.60 [1.11, 2.30]				
Houthuizen, et al. 2014	30	111	56	365	14.0%	1.76 [1.19, 2.60]				
Total (95% CI)		1062		3694	100.0%	1.21 [0.98, 1.50]			•	
Total events	230		698							
Heterogeneity: Tau ² = 0	.04: Chi ² = 13.89, d	f=7(P	= 0.05); l² = 50%					1	+ +	
Test for overall effect: Z	= 1.82 (P = 0.07)					No I	0.2 .BBB folk	0.5 owing TAVR	1 2 LBBB follow	ס ing TAVR

ity School of M Rigueiro, A, et al. Circ Cardiovas Interv 2016;9:e003635

Impact of PPM on Duration of Hospitalization and Re-Hospitalization

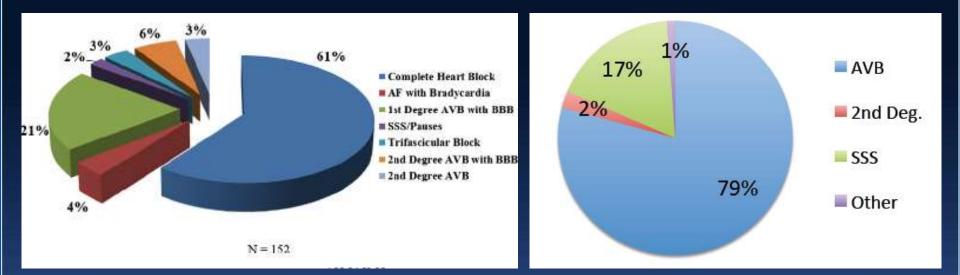
- PARTNER : 1973 Sapien
- Post-procedure hospitalization: PPM vs No-PPM: 7.3 vs 6.2 days, p<0.001

Additional Costs of PPM after TAVR

Variable	Model: STS ^a		Model: LES ^b				
	Rate ratio (95% CI)	Р	Rate ratio (95% CI)	P			
STS score at inclusion > 10%	1.15 (1.05-1.27)	< 0.01	NA	NA			
LES at inclusion > 20%	NA	NA	NR	NR			
Warfarin use at inclusion	1.15 (1.04-1.28)	0.01	1.16 (1.05-1.29)	< 0.01			
Transapical approach	1.14 (1.03-1.27)	0.02	1.14 (1.02-1.27)	0.02			
Use of hybrid room	NR	NR	1.17 (1.02-1.36)	0.03			
Complication(s) during procedure	1.19 (1.06-1.33)	< 0.01	1.17 (1.05-1.29)	< 0.01			
Pacemaker implantation during hospitalization	1.36 (1.20-1.54)	< 0.001	1.36 (1.21-1.54)	< 0.001			
Adjusted R ²	0.14	0.13					

CI: confidence interval; LES: Logistic Euroscore; NA: not applicable; NR: not retained in the final model because not significant; STS: Society of Thoracic Surgeons.

* STS score and all other variables except those used for b LES and all other variables except those used for usership.


Variables	Number of	Cost unit (in €)		<u>e</u>	Cost catego	Total in-hospital		
	events	Normal ward (in €)	ICU (in €)	Cath lab/OR (in €)	Other costs (in €)	Staff costs (in €)	Material costs (in €)	Infrastructure costs (in €)	costs (in €)
Constant (predicted costs in case of no complication)		3707**	3960**	23,815**	2666**	7319**	23,624**	3403**	34,351**
TA instead of TF-TAVI	66	2495	-393	-104	576	1836+	- 968	1422**	2307
Access site bleeding - Tife threatening	18	-1822*	4277	1142	1804 *	1938	3709*	- 80	5556
Access site bleeding - major	13	17	590	1589	-234	-59	2674	-545	2066
Access site bleeding - minor	8	491	840	74	698	1269	265	455	1989
Non-access site bleeding - life threatening	4	929	37,322*	1146	8553*	24,031"	14,238+	9217**	47,494"
Non-access site bleeding - major	7	758	-1392	-197	163	-846	113	197	- 533
Non-access site bleeding - minor	12	654	-774	476	11	264	- 169	335	432
Vascular complication - major	19	814	455	-611	- 55	789	-1493	910	210
Vascular complication - minor	26	780	180	364	286	710	558	295	1563
Stroke (including TIA)	8	1573	-3350	3168	-141	-378	1423	187	1227
Acute kidney injury - stage 1	14	1242	-1688	-185	-602	-519	-438	-238	-1203
Acute kidney injury - stage 2	10	1535	9530+	-545	1181	6034*	3721	2050+	11,811+
Acute kidney injury - stage 3	12	362	17,040**	- 1358	4043**	11,931**	4356	4192**	20,468
Second valve	4	- 994	-1174	13,856**	371	-924	18,302**	-611	16,767**
Atrial flutter/fibrillation	12	132	1078	- 1001	245	631	496	276	1207
Pacemaker implantation	56	380	-715	1946*	370	849	-95	690+	1441
Other severe cardiac dysthythmia	11	1586	5490*	200	3224	5592	3001*	2028	10,611
Moderate aortic insufficiency	11	- 363	510	596	-592	-81	130	-1	46
Adjusted R ²		0.06	0.58	0.28	0.45	0.54	0.45	0.49	0.51
N		163	163	163	163	163	163	163	163

In addition to the complications shown above, 'other complications' as described in Table 1 were also included in the regression analyses.

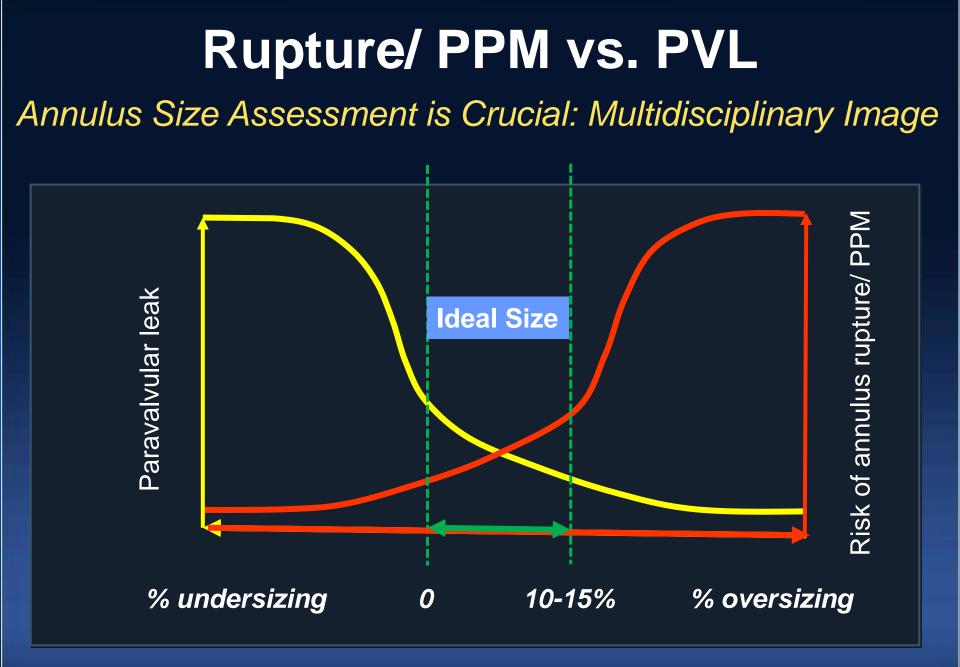
Chevreul. Arch Cardiovasc Dis 2013, Gutmann. IJC 2015.

Indication for PPM After TAVR

N=152, 98% MCV

Steinberg. Am Heart J. 2012;164:664-71

N=173 ESV


Nazif. JACC Intervention 2015

University School of Medicine

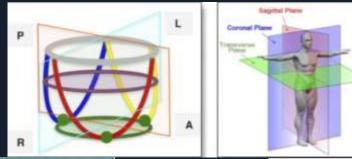
Adapted from Nazif T. TVT 2017

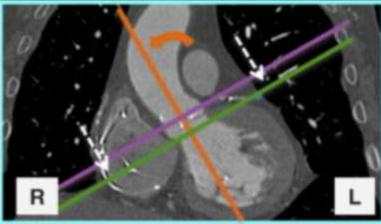
Iniversity School of Me Adapted from Thierry Lefevre; London Valves, 2012

CHA Bundang Medical Cente

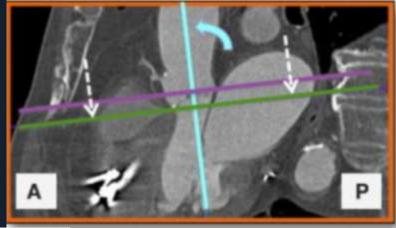
Conclusions

- Conduction disturbances and PPM are frequent complication of TAVR
- Most of them resolve over time as the tissue heals and adapts to the THV valve
- However, the conduction disturbances that remain may not be benign
 - LBBB deterioration to more severe conduction disturbances with time
 - Asynchronous contraction patterns due to LBBB or RV pacing may lead to heart failure
- Risk is determined by a complex between patient substrate (RBBB, calcification, etc) and procedural factors
- Careful attention to positioning THV valves 4-6 mm or less relative to the annulus (self-expanding) and less-oversizing (balloon-expandable) will minimize conduction disturbances
- Watchful waiting prior to PPM implantation may be warranted (conservative strategy by guideline)


Thank you.



University School of Medicine

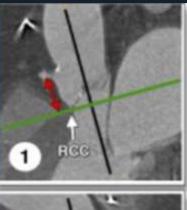


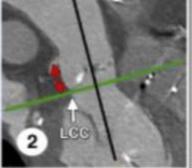
Aortic Annulus on MSCT

Oblique Coronal Image

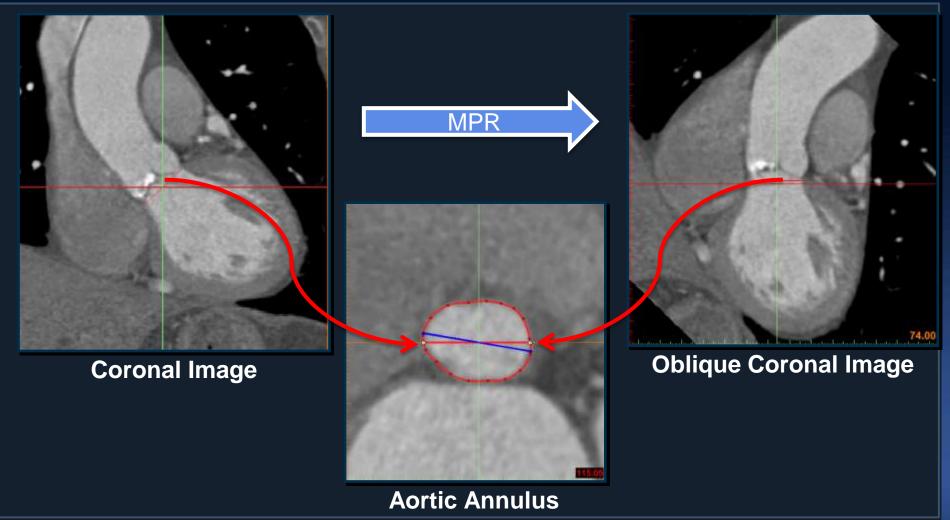
Oblique Sagittal Image



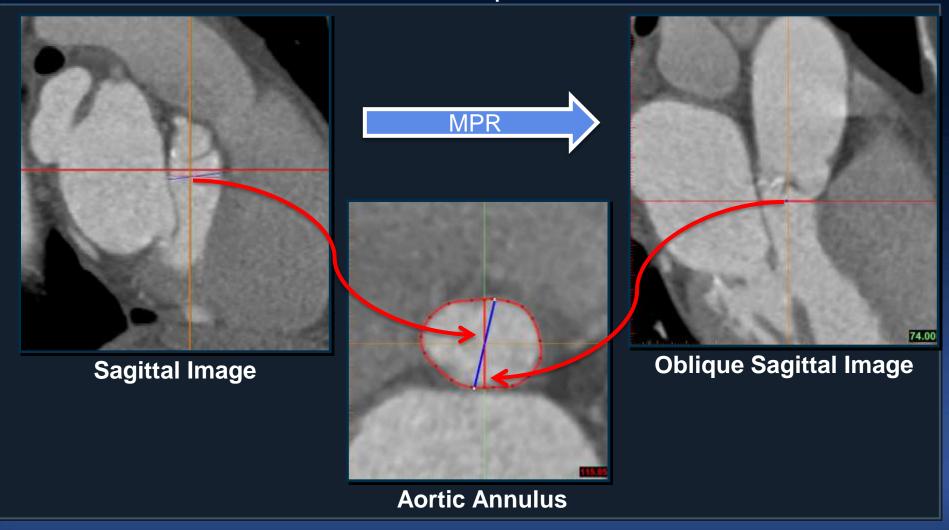

Jniversity School of Medicine


A Bundang Medical Cent

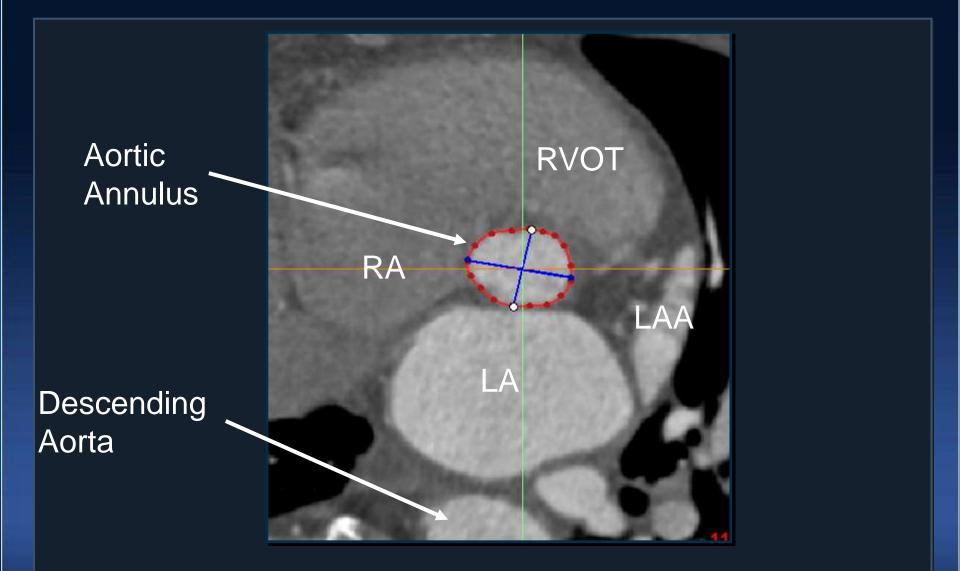
Aortic Annulus on MSCT

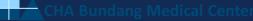


University School of Medicine

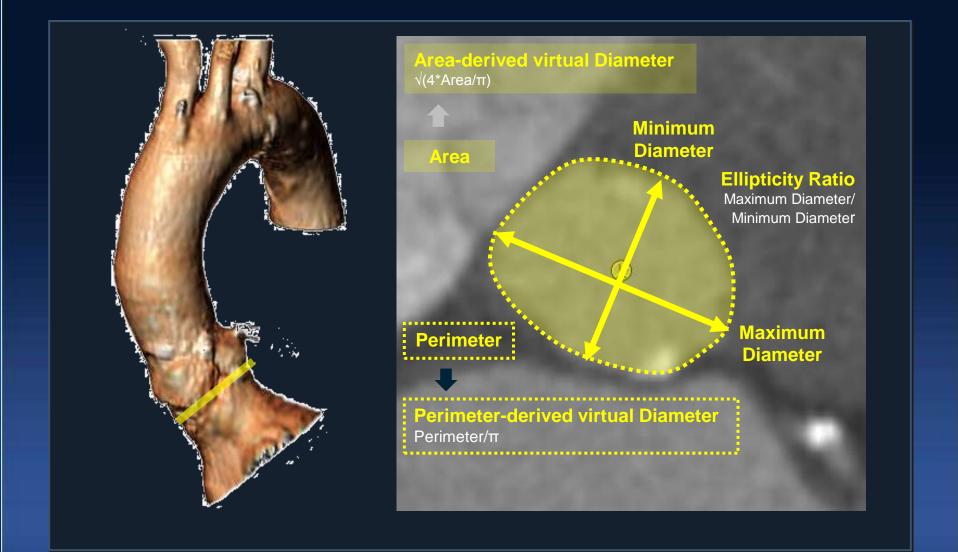

Aortic Annulus on MSCT Coronal measurements do not equal those from the annular plane

Aortic Annulus on MSCT Sagittal measurements do not equal those from the annular plane





Jniversity School of Medicine



The Aortic Annulus on MSCT

New CT Parameters

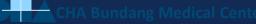
Jniversity School of Medicine

CT Sizing for Edwards Valve

J Am Coll Cardiol Img. 2013;6(2):249-262.

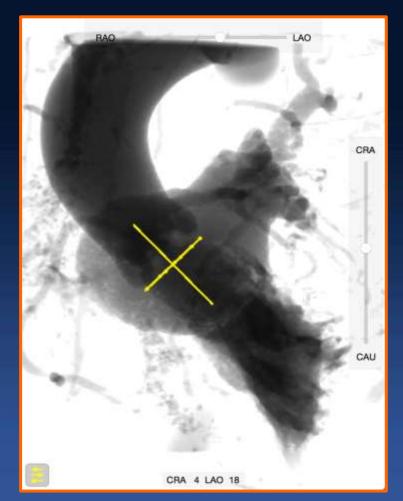
CT Sizing for Edwards S3

3D Area - derived Diam	eter (n	nm)	20	.0 2	0.2	20.5	20.7	21.0	21.1	21.4	21.	7 22	.0 2	22.3	22.6	22.8	23.0	23.1	23.4	23.	.7 2	3.9	24.0	24.2	24.7
3D Annular Area (r	nm²)		31	4 3	20	330	338	346	350	360	370	38	0	390	400	410	415	420	430	44	0 4	50	452	460	480
	:	23mm	1 29	.3 2	6.9	23.0	20.1	17.3	16.0	12.8	9.7	6.	8	4.0	1.5	-1.0	-2.2	-3.3	-5.6	-7.	7 -	9.8			
% Annular Area Over (+) Under (-) Nominal by 3D (26mm	1												29.8	26.6	25.1	23.6	20.7	7 18.	.0 1	5.3	14.8	12.8	8.1
29mm		29mm	•																						
25.0 25.2	25.5	25.7	26.0	26.2	26.4	26.5	26.7	26.9	27.2	27.4	27.6	27.9	28.0	28.1	28.3	28.5	28.8	29.0	29.2	29.4	29.5	29.6	29.9	30.1	30.3
490 500	510	520	530	540	546	550	560	570	580	590	600	610	615	620	630	640	650	660	670	680	683	690	700	710	720
5.9 3.8	1.8	-0.2	-2.1	-3.9	-4.9	-5.6	-7.3	-8.9																	
29.8	27.3	24.8	22.5	20.2	18.9	18.0	15.9	13.9	11.9	10.0	8.2	6.4	5.5	4.7	3.0	1.4	-0.2	-1.7	-3.1	-4.6	-5.0	-5.9	-7.3	-8.6	-9.9



CT Sizing for CoreValve

Valve Size	Aon	tic Annulus Measurem	ents		Native Leaflet to	Ascending	
	Diameter	Perimeter	Area Range	Sinus of Valsalva Diameter	Sinotubular Junction Length	Aorta Diameter*	
23	18-20 mm	56.5-62.8 mm	254.5-314.2 mm	≥ 25 mm	≥ 15 mm	≤ 34 mm	
26	20-23 mm	62.8-72.3 mm	314.2-415.5 mm	≥ 27 mm	≥ 15 mm	≤ 40 mm	
29	23-26 mm	72.3-81.7 mm	415.5-530.9 mm	≥ 29 mm	≥ 15 mm	≤ 43 mm	
31	26-29 mm	81.7-91.1 mm	530.9-660.5 mm	≥ 29 mm	≥ 15 mm	≤ 43 mm	


*Ascending Aorta measurements are taken at 30 mm from the aortic annulus for the 23 mm device and at 40 mm from the aortic annulus for the 26, 29, and 31 mm devices.

Valve position too high?

LAO 18 CRA 4

Adapted from N. Piazza EuroPCR 2015

Valve position correct?

RAO 40 CAU 38

